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Abstract

Similarity solutions are constructed for the flow of granular materials through hoppers. Unlike previous work, the

present approach applies to nonaxisymmetric containers. The model involves ten unknowns (stresses, velocity, and

plasticity function) determined by nine nonlinear first order partial differential equations together with a quadratic

algebraic constraint (yield condition). A pseudospectral discretization is applied; the resulting problem is solved with

a trust region method. The important role of the hopper geometry on the flow is illustrated by several numerical

experiments of industrial relevance.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This is the second in a series of papers on the mechanics of a granular material under the influence of

gravity flowing through converging hoppers of simple geometry. While such devices are common in many

industrial processes, the withdrawal of stored materials from hoppers and bins is well known to be

problematic. Segregation, lack of flow, flooding (uncontrolled flow) and structural failures are often en-

countered [14]. A better understanding of such flows should lead to improved hopper design criteria.
Commonly used models are subject to severe restrictions [8,10,12,13,16,22,24]:
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(i) The granular material is modeled as a continuum, with ad hoc constitutive laws.

(ii) The flow is assumed to be steady.

(iii) Only similarity solutions are considered.

(iv) The flow domain is pyramidal, i.e., it is invariant under the transformation (expressed in spherical co-
ordinates) r 7!cr, for any c > 0.

(v) The flow domain is axisymmetric.

The combination of assumptions (iv) and (v) corresponds to a right circular cone, see Fig. 1, upper left

fðr; h;/Þ : 0 < r < 1; 06 h < hwg; ðhw ¼ constantÞ: ð1Þ

In that case, it was observed by Jenike [12,13] in the late 1950s that similarity solutions, as in (iii), can be

constructed (see (8) below for a precise definition). To date, this approach remains a central component in

silo design. In [7], restrictions (iii) and (iv) were removed, see Fig. 1, upper right, see also [15,17,19] for more

results in that direction. In the present paper, (iii) and (iv) are retained while (v) is removed. More precisely,

the hopper is an infinite pyramidal domain

fðr; h;/Þ : 0 < r < 1; 06 h6Cð/Þg; ð2Þ

where C is a given piecewise smooth 2p-periodic function describing the boundary of the cross section of

the hopper, see Fig. 1, bottom left. The present study was started in [9], where small perturbations of the

axisymmetric case, specifically boundaries of equation Cð/Þ ¼ hw þ � cosm/, were considered. Equations

for first order corrections in � were derived and solved. Here, cross sections of arbitrary shape can be

considered. The authors are aware of no other contribution studying the effects of the geometry on the flow

of granular materials in this setting. The case of fully three-dimensional hoppers such as the transitional

hopper displayed in Fig. 1, bottom right, appears to be open.
Jenike’s solutions are such that grains follow radial lines (only the r-component of the velocity is

nonzero). Experimental evidence confirms the important role played by those radial solutions in practice

[15,16] in conical containers (1).
Fig. 1. Various geometries and corresponding numerical domains of resolution; top left: axisymmetric self-similar domain: Jenike’s

approach on a cone reduces to solving ODEs on a r constant line; top right: axisymmetric non self-similar, see e.g. part I of this series,

[7]: nonlinear conservation laws are solved in the shadowed domain; bottom left: nonaxisymmetric self-similar: this paper; bottom

right: general three-dimensional hopper: open problem.
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Since general pyramidal hoppers are self similar (see (iv)), one could expect the radial character of the

flow to hold in those cases as well. Our study, which makes use of assumptions (i) through (iv), finds this to

be far from true. We show that a loss of axisymmetry in the hopper geometry induces secondary circulation
as well as strong nonuniformity of the stresses in the azimuthal direction.

The paper is organized as follows. The model, geometry, and physical assumptions are discussed in

Section 2. Simple scaling arguments reveal the similarity character of the solutions in the r direction. As a

result, the solutions are computed on spherical caps of various shapes. The numerical approach is

pseudospectral in nature and is described in Section 3. It uses Fourier collocation in longitude and, to

account for the boundary conditions, Chebyshev–Gauss–Radau collocation in latitude. Section 4 is de-

voted to the description of several numerical experiments. Conclusions are offered in Section 5.
2. The model

The physical quantities and corresponding equilibrium equations are expressed in spherical polar co-

ordinates, with the origin corresponding to the vertex of the hopper. For a particular pyramidal domain, a

coordinate system that is better suited to the geometry can be constructed. However, such a coordinate

system is not typically orthogonal, complicating greatly the structure of the basic equations of Continuum

Mechanics [2]. To simplify the numerics, such alternate coordinate systems are introduced in Section 4
through a change of variables, but the individual components of the stress tensor and velocity are still

measured with respect to the original spherical coordinates.

The unknowns are the 3� 3 symmetric stress tensor T , the 3-component velocity vector v, and a scalar

plasticity function k where

T ¼
Trr Trh Tr/
Trh Thh Th/
Tr/ Th/ T//

2
4

3
5 and v ¼

vr
vh
v/

2
4

3
5;

ðr; h;/Þ being the spherical coordinates, with h the elevation angle and / the azimuthal one. The density q is

assumed to be constant. In total, there are 3+6+1¼ 10 unknown functions. In writing the equations for

these variables, we need the strain rate tensor V ¼ �ðrvþrvTÞ=2 and the deviatoric part of the stress

tensor devT ¼ T � 1
3
ðtrT ÞI . Note the sign convention: V measures the compression rate of the material;

analogously, positive eigenvalues of T correspond to compressive stresses. This sign convention reflects the

fact that granular materials disintegrate under tensile stresses.

Following [10,16,22], we require that these variables satisfy

r � T ¼ qg; ð3Þ
V ¼ kdevT ; ð4Þ
jdevT j2 ¼ 2s2ðtrT=3Þ2; ð5Þ

where g is the (vector) acceleration due to gravity, j � j denotes the Frobenius norm

jT j2 ¼
X3

i;j¼1

T 2
ij ¼ trT 2

(the latter equality only for symmetric tensors), and s ¼ sin d, with d being the angle of internal friction of

the material under consideration (see [16]). Eq. (3) expresses force balance, i.e., Newton’s second law with
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inertia neglected because the flow is assumed slow; it is equivalent to three scalar equations. Eqs. (4) and (5)

are constitutive laws, the alignment condition (or flow rule) and the von Mises yield condition, 3 respec-

tively; they are equivalent to six and to one scalar equations. The full expressions of the equilibrium
equation (3) and of V in spherical coordinates are classical and can be found for instance in [23, p. 184].

Thus (3)–(5) is a determined system, 10 equations for 10 unknowns. Since (5) contains no derivatives, this

system has a differential-algebraic character. Taking the trace of (4), we see that divv ¼ �trV ¼ 0; thus,

incompressibility is part of the constitutive assumptions. Incidentally, for a solution to be physical, the

function k in (4) must satisfy kP 0 everywhere; otherwise friction would be adding energy to the system

rather than dissipating it. In fact, we want k to be strictly positive since one of the assumptions underlying

the derivation of (3)–(5) is that material is actually deforming.

The alignment condition (4) of the eigenvectors of T and V in effect neglects the rotation of a material
element during deformation, a controversial assumption. There is experimental evidence that misalignment

may occur under some circumstances [6]. A few alternative models which allow for the above eigenvectors

to be somewhat out of alignment have been proposed, see e.g. [24,25]. While such models have been

successfully applied to axisymmetric geometries, their formulation becomes very involved in more general

cases and has, to our knowledge, never been fully described. Further, there does not seem to be enough

experimental data to favor one type of model over the other. We refer to [10] for a lucid, if somewhat dated,

account of the situation. Our contribution to this debate is the first calculation of solutions to any model in

relatively general geometries. 4

We seek solutions of (3)–(5) in a pyramidal domain (2). On the boundary oX ¼ fðr;Cð/ÞÞ;/Þg, wall
impenetrability imposes one boundary condition on the velocity: i.e.,

vN ¼ 0; ð6Þ

where vN is the normal velocity. Two additional boundary conditions come from Coulomb’s law of sliding

friction. The surface traction s – i.e., the force exerted by the wall on the material – is given by

si ¼
X3

j¼1

TijNj;

where N is the unit interior normal to oX. If the vector s has normal component sN and tangential pro-

jection sT ¼ s� sNN , then we require that

sT ¼ �lwsNðv=jvjÞ; ð7Þ

where lw is the coefficient of friction between the wall and the material. Note that: (a) If T is positive
definite (i.e., if all stresses are compressive), then sN > 0. (b) While sN is a scalar, sT is effectively a two-

component vector; thus, (7) is equivalent to two scalar equations. (c) Because of (6), the velocity v is

tangential to oX; we are assuming that v 6¼ 0 at the boundary.

Putting together assumptions (iii) and (iv) from Section 1, we seek similarity solutions of the form

Tij ¼ rTijðh;/Þ; vi ¼
1

r2
Viðh;/Þ; k ¼ 1

r4
Lðh;/Þ; ð8Þ
3 The name is kept from the corresponding metal plasticity model even though the yield surface is cylindrical there while conical here

[22].
4 Comparison with experimental data is underway; joint work with R.P. Behringer (Duke, Physics), J. Wambaugh (Duke, Physics)

and D.G. Schaeffer (Duke, Mathematics). We are also in the process of applying the present approach to materials governed by a

Matsuoka–Nakai yield condition [5].
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where Tij and vi are any component of the stress tensor and velocity vector respectively. Eqs. (3)–(5) lead

then to the following system for the ten unknowns Trr;Trh;Thh;Tr;/;Th/;T//;Vr;Vh;V/ and L.

ohTrh þ cscðhÞo/Tr/ þ 3Trr �Thh �T// þ cotðhÞTrh ¼ �qg cosðhÞ; ð9Þ
ohThh þ cscðhÞo/Th/ þ 4Trh þ cotðhÞðThh �T//Þ ¼ qg sinðhÞ; ð10Þ
ohTh/ þ cscðhÞo/T// þ 4Tr/ þ 2 cotðhÞTh/ ¼ 0; ð11Þ
2Vr ¼ LðTrr �PÞ; ð12Þ
� 1

2
ðohVr � 3VhÞ ¼ LTrh; ð13Þ
�ohVh �Vr ¼ LðThh �PÞ; ð14Þ
� 1

2
ðcscðhÞo/Vr � 3V/Þ ¼ LTr/; ð15Þ
� 1

2
ðohV/ þ cscðhÞo/Vh � cotðhÞV/Þ ¼ LTh/; ð16Þ
�ðcscðhÞo/V/ þVr þ cotðhÞVhÞ ¼ LðT// �PÞ; ð17Þ
jdevTj2 ¼ 2s2P2; ð18Þ

where T ¼ 1
r T and P ¼ 1

3
trT ¼ 1

3
ðTrr þThh þT//Þ.

The above equations have to be satisfied in the spherical domain fðh;/Þ;�p < / <p <;
0 < h < Cð/Þg.

The boundary conditions (6) and (7) can be expressed in terms of the above unknowns. The unit interior
normal vector N on the outside wall h ¼ Cð/Þ takes the form

N ¼ ½Nr;Nh;N/� ¼ ½0;� sin h;C0ð/Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 hþ C0ð/Þ2

q
:

Therefore, when h ¼ Cð/Þ; 0 < / < 2p, one has

VhNh þV/N/ ¼ 0; ð19Þ
V/ðTrhNh þTr/N/Þ �Vr½�ThhN 2
hN/ þTh/Nhð1� 2N 2

/Þ þT//N/N 2
h � ¼ 0; ð20Þ
ðTrhNh þTr/N/Þ2 þ ðThhNhN/ �T//NhN/ þTh/ðN 2
/ � N 2

h ÞÞ
2

¼ l2
wðThhN 2

h þ 2Th/NhN/ þT//N 2
/Þ

2
; ð21Þ

where (19)–(21) correspond respectively to the conditions (6), sT � v ¼ 0, a vector relation yielding two

nontrivial scalar relations, and jsTj ¼ lwsN, both expressed in the new variables. Note that the above set of

equations defines the unknowns Vr, Vh, V/ and L only up to a multiplicative constant. This is a con-

sequence of the similarity character of the present approach and is found with Jenike’s solution as well. To
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eliminate this indeterminacy, we fix the value of one component of the velocity, say Vr, at one point in the

computational domain. Here, we choose

VrðH0;U0Þ ¼ v�; ð22Þ

where H0 and U0 are defined in the next section and where v� in effect scales the flow rate out of the hopper.

For Jenike’s solution, a typical normalization is to take the maximum (radial) velocity equal to )1. All three

one-parameter families of nonaxisymmetric domains considered in Section 4 admit the right circular cone

as a special case. In all three cases, the boundary value v� is taken as the value of Jenike’s radial velocity at

the wall under the above normalization for a right circular cone. Note that no conditions are needed at

h ¼ 0 (or more precisely, considering only nonsingular solutions at that point is a boundary condition).

Further, 2p-periodicity is imposed in the / direction.

Along with the above unknowns, a stream function is also computed. Under assumption (8), the in-
compressibility condition div v ¼ 0 reads here

ohðsin hVhÞ þ o/V/ ¼ 0:

A stream function W can be introduced through

o/W ¼ sin hVh; and ohW ¼ �V/:

In fact, W can be characterized as the solution to a Poisson problem on the spherical cap under

consideration

DW ¼ �nr; for 0 < h < Cð/Þ; �p < / < p; ð23Þ
W ¼ 0; on h ¼ Cð/Þ; �p < / < p; ð24Þ

where D ¼ ð1= sin hÞohðsin hohÞ þ ð1= sin2 hÞo// is the Laplace operator on the sphere and nr is r3 times the r
component of the vorticity n ¼ r� v, i.e., nr ¼ cot hV/ þ ohV/ � ð1= sin hÞo/Vh. As above, periodicity is

assumed in the / direction.
3. Numerical analysis

In order to simplify the numerics, the problem is mapped onto a rectangular computational domain. We

define the new coordinates

H ¼ hw
h

Cð/Þ and U ¼ /:

Note that fH;Ug is not an orthogonal coordinate system. However, the computational domain is now

simply ð0; hwÞ � ð�/w;/wÞ, where /w corresponds to the smallest interval of periodicity of the solution in

the / direction. More precisely, for a pyramidal hopper of general cross section, /w ¼ p; for a square cross

section for instance, one can take /w ¼ p=4 and construct the solution from �p to p by duplicating the
solution obtained between �p=4 and p=4 in the obvious way.

Eqs. (9)–(21) are written in the new coordinate system. The reader is spared the expression of the cor-

responding equations. The resulting problem can be discretized by collocation; Chebyshev collocation at

the Chebyshev–Gauss–Radau points is used in H, while Fourier-cosine collocation at the Fourier collo-

cation points is used in U. Due to the relatively large number of unknowns (ten), the use of a spectral

method which delivers high accuracy with a low number of nodes is advantageous, especially since we

expect the fields to be smooth. For each of those unknowns, we set
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UNMðH;UÞ ¼
XN�1

n¼o

XM=2�1

m¼�M=2

UnmwnðHÞeimpð
U
/w

þ1Þ; ð25Þ

where fwng
N�1

n¼0 are the Lagrange interpolation polynomials at the Chebyshev–Gauss–Radau nodes on

½0; hw�, i.e.

Hj ¼
hw
2

1

�
þ cos

2pj
2N � 1

� ��
; j ¼ 0; . . . ;N � 1: ð26Þ

The above choice, as opposed to the more standard Chebyshev–Gauss–Lobatto collocation, see e.g. [4,

Section 2.4], results from the nature of the boundary condition along H ¼ hw. For completeness, we derive

below the expression of the collocation derivative for Chebyshev–Gauss–Radau nodes (which we have not

been able to find in the literature).

Lemma 1. The Lagrange interpolation polynomials on the Chebyshev–Gauss–Radau nodes (26) are given by

wjðHÞ ¼ 1

cj

hw �H
H�Hj

1

N
T 0
N

2H
hw

��
� 1

�
þ 1

N � 1
T 0
N�1

2H
hw

�
� 1

��
; j ¼ 0; . . . ;N � 1;

where

c0 ¼ 1� 2N ;
cj ¼ � hw
�2Hj

N cos
2pNj

2N � 1

�
þ ðN � 1Þ cos 2pðN � 1Þj

2N � 1

�
; j ¼ 1; . . . ;N � 1;

and TNðxÞ ¼ cosðN arccos xÞ; jxj6 1, is the Chebyshev polynomial of degree N.

The above result can easily be verified through the use of L’Hospital’s rule and elementary properties of

the Chebyshev polynomials. Interpolation at the nodes (26) of a function u of H defined in [0; hw] simply

takes the form

INuðHÞ ¼
XN�1

j¼0

uðHjÞwjðHÞ:

By definition, the Chebyshev collocation derivative of u at those nodes is then

ðINuÞ0ðHlÞ ¼
XN�1

j¼0

uðHjÞw0
jðHlÞ ¼

XN�1

j¼0

DljuðHjÞ;

with Dlj ¼ w0
jðHlÞ. The collocation derivative at the nodes can then be obtained through matrix multipli-

cation. Elementary albeit tedious calculations lead to the following expressions

Dlj ¼

2
3hw

NðN � 1Þ; if l ¼ j ¼ 0;
2

c0hw sin 2 2pl
2N�1

ðN cos 2Npl
2N�1

þ ðN � 1Þ cos 2ðN�1Þpl
2N�1

Þ if j ¼ 0;

l ¼ 1; . . . ;N � 1;
cl
cj

1
Hl�Hj

if j ¼ 1; . . . ;N � 1;

j 6¼ l; l ¼ 0; . . . ;N � 1;
� 1

4Hj
3hw�2Hj

hw�Hj
� hw

4cjHj

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hjðhw�HjÞ

p

ðN2 sinðN arccosð2Hj

hw
� 1ÞÞ þ ðN � 1Þ2 sinððN � 1Þ arccosð2Hj

hw
� 1ÞÞÞ if j ¼ l ¼ 1; . . . ;N � 1:

8>>>>>>>>>><
>>>>>>>>>>:
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To minimize round-off errors, trigonometric identities are used to express the quantities Hl �Hj [20],

namely

Hl �Hj ¼ hw sin
p

2N � 1
ðj

�
þ lÞ

�
sin

p
2N � 1

ðj
�

� lÞ
�
; j; l ¼ 0; . . . ;N � 1:

Further, as suggested in [1], the differentiation matrix D is made to represent exactly the derivative of a

constant by numerically satisfying the identity
PN�1

j¼0 Dlj ¼ 0, l ¼ 0; . . . ;N � 1. More precisely, the off-di-

agonal terms only are computed using the above formula while the diagonal entries are determined by

Dll ¼ �
XN�1

j¼0;j 6¼1

Dlj; l ¼ 0; . . . ;N � 1:

In the U direction, the collocation points are taken as the usual Fourier collocation nodes, i.e.,

Ul ¼ /w

2l
M

�
� 1

�
; l ¼ 0; . . . ;M � 1: ð27Þ

Let U be the N �M matrix of coefficients Unm, n ¼ 0; . . . ;N � 1, m ¼ 0; . . . ;M=2� 1;�M=2; . . . ;�1 for one
of the variables under consideration and let W be the M �M Fourier matrix

W ¼

1 1 1 . . . 1
1 xM x2

M . . . xM�1
M

1 x2
M x4

M . . . x2ðM�1Þ
M

. . . . . . . . . . . . . . .
1 xM�1

M x2ðM�1Þ
M . . . xðM�1Þ2

M

2
66664

3
77775;

where xM ¼ e2pi=M is the primitive Mth root of unity. Further, if K is the M �M diagonal matrix with

diagonal ½0; . . . ;M=2� 1;�M=2; . . . ;�1�, then for any pair j and l, j ¼ 0; . . . ;N � 1; l ¼ 0; . . . ;M � 1, the

nodal values of UNM and its derivatives can be expressed as follows

UNMðHj;UlÞ ¼ ðUW Þjl;
oHUNMðHj;UlÞ ¼ ðDUW Þjl;
oUUNMðHj;UlÞ ¼ 4iðUKW Þjl:

Each of the ten unknowns Trr;Trh;Thh;Tr/;Th/;T//;Vr;Vh;V/ and L is now expanded according

to (25). Their coefficient matrices are denoted Urr;Urh;Uhh;Ur/;Uh/;U//;Ur;Uh;U/ and U , respectively. The
discretized equations 5 are obtained as follows

• Eqs. (9)–(18), written in terms of (H;U), are satisfied at the collocation points {(Hj;Ul)},

j ¼ 1; . . . ;N � 1; l ¼ 0; . . . ;M � 1,

• at the boundary nodes {H0;Ul)}, l ¼ 0; . . . ;M � 1, Eqs. (9)–(11) are replaced by the boundary condi-

tions (19)–(21), i.e., Eqs. (12)–(18) and (19)–(21), all written in terms of (H;U), are satisfied there,

• at (H0;U0), the boundary condition (19) is replaced by (22).

This results in a system of nonlinear equations

F ðX Þ ¼ 0;
5 From here on down and unless stated otherwise, we refer to the equations written in the new variables ðH;UÞ. As those can easily be

obtained from (9)–(21), we do not rewrite them explicitly, for the sake brevity.
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where the unknown X ¼ ½Urr;Urh;Uhh;Ur/;Uh/;U//;Ur;Uh;U/;U �T is a 10N �M matrix and

F : R10N�M ! R10N�M is a quadratic function with variable coefficients. The current nonlinear solver uses a

trust region dogleg method [18] with finite difference Jacobians.
The problem (23) and (24) for the stream function is discretized using the same approach as above, but is

solved independently in a post-processing step.
4. Numerical results

Several experiments are presented in order to display the importance of the loss of axisymmetry on the

stress and velocity fields. A detailed material parameter study will be presented elsewhere. Note that for
ease of interpretation all the numerical results below correspond to values obtained after projection onto a

horizontal cross section and not a spherical cap as would be directly obtained from the model. The sym-

metry of both domain and solution is taken into account to reduce computational costs. The discretization

is taken as N ¼ M ¼ 20; solutions were checked to have converged as expected for spectral methods of this

type (i.e., further refinement does not alter the results in any significant way).

4.1. Vertical elliptical hoppers

A family of hoppers described by the following equation are considered

Cð/Þ ¼ p=6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2 cos2 /

p ; 06E < 1; ð28Þ

where E stands for the eccentricity. For various eccentricities, the percentage of difference between the

largest and smallest values of the normal stress on a horizontal cross section of the wall was computed, see

Fig. 2, left. The eccentricity varies from E ¼ 0 (circular cross section) to E ¼ 0:866 which roughly corre-

sponds to a 2 to 1 ratio between major and minor axes. The relative difference (as a percentage) between the

largest and smallest values rM and rm taken by the normal stress on a horizontal cross section of the wall,
i.e., 100rM�rm

rm
varies correspondingly from 0 (1.81� 10�11 to be precise) in the axisymmetric case to about
0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

eccentricity

st
re

ss
 d

iff
er

en
ce

 p
er

ce
nt

ag
e

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

p

st
re

ss
 d

iff
er

en
ce

 p
er

ce
nt

ag
e

Fig. 2. Effect of the geometry on the normal wall stress. Left: effect of the eccentricity in vertical hoppers with elliptical cross sections

given by (28) for E between 0 and 0.866. Right: effect of the parameter p on the normal wall stress in vertical hoppers with square like

cross sections given by (29) for p between 2 and 20. Material parameters correspond to corn in a steel hopper: angle of internal friction

d ¼ 32:1�, angle of wall friction¼ 11.7�.



648 P.A. Gremaud et al. / Journal of Computational Physics 200 (2004) 639–653
600% for E ¼ 0:866. In other words, the normal stress varies by more than a factor 6 for this range of

hopper geometries.

Fig. 3 clearly illustrates the effects of the loss of axisymmetry. This is further supported by Fig. 4, which
depicts the behavior of the normal stress along the boundary. In the present elliptical case, the normal stress
Fig. 3. Flow in a vertical elliptical hopper (28) with E ¼ 0:866 (major axis/minor axis �2); material parameters correspond to corn in a

steel hopper: angle of internal friction d ¼ 32:1�, angle of wall friction¼ 11.7�. Only half of the domain is represented.
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Fig. 4. Behavior of the normal stress along the wall; dash-dot line: vertical elliptical hopper (28) with E ¼ 0:866; solid line: vertical

‘‘square-like’’ hopper (29) with p ¼ 20; dashed line: tilted right circular hopper (30) with hw ¼ 30� and a tilt angle a ¼ 14�; material

parameters correspond to corn in a steel hopper: angle of internal friction d ¼ 32:1�, angle of wall friction¼ 11.7�. For comparison

purposes, the maximal values are normalized to 1.
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reaches its maximum value at the points of largest curvature. This type of nonuniformity, while ignored in

standard models in this field, may be at the root of very important effects such as shell buckling and other

structural failure modes routinely observed in silos [21]. One observes from the graph of Vr that motion

mainly takes place in a central circular core of the domain. Further, secondary circulation, while totally

absent from Jenike’s theory, is clearly present here as shown by the graph of the stream function: four

vortices (for the full domain) are formed. However, the angular components of the velocity, Vh and V/,
are about two orders of magnitude smaller than Vr.

4.2. Vertical square hoppers

In spite of being well-known to have suboptimal flowing properties, hoppers with square cross sections

are still widely used in many applications.

A family of hoppers described by the following equation are considered

Cð/Þ ¼ p=6

ðcosp /þ sinp /Þ1=p
; 26 p < 1: ð29Þ

The above domain corresponds to the unit disk with respect to the p-norm;for p � 2, the domain ap-

proximates a square.

In Fig. 2, right, the parameter p varies from 2 (circular cross section) to 20. The relative difference (as a

percentage) between the largest and smallest values rM and rm taken by the normal stress on a horizontal
cross section of the wall, i.e., 100 rM�rm

rm
varies correspondingly from 0 in the axisymmetric case p ¼ 2 to

about 150%.

As can be seen from Fig. 4, the nonuniformity of the stresses is less prominent for (almost) square

hoppers than it is for elliptical ones. It is worth noting that the normal stress is largest at the corners, a

feature of possible importance to structural engineers. The profile of the radial velocity Vr is much steeper

than it was in Fig. 3, a feature reminiscent of funnel flows. Additionally, the angular components of the

velocity are here about three orders of magnitude smaller than the radial one; compared to the elliptical



Fig. 5. Flow in a vertical ‘‘square-like’’ hopper (29) with p ¼ 20; material parameters correspond to corn in a steel hopper: angle of

internal friction d ¼ 32:1�, angle of wall friction¼ 11.7�. Only a quarter of the domain is represented.
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Fig. 6. Flow in a tilted right circular hopper (30) with hw ¼ 30� and a tilt angle a ¼ 14�; material parameters correspond to corn in a

steel hopper: angle of internal friction d ¼ 32:1�, angle of wall friction¼ 11.7�.
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hopper, circulation is less pronounced. In the full domain, eight circulation cells are present, as can be seen

from the stream function graph in Fig. 5. The structure of the flow does not appear to change significantly

for larger values of the parameter p in (29).
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Recent experimental results suggest that, in apparent contradiction of Janssen’s original prediction [11],

the greatest normal stress on the walls of a silo or hopper with square cross-section is felt not at the

midpoint of a wall but rather at the corners [3]. Our present computational results seem consistent with
these experimental observations.
4.3. Tilted circular hoppers

Industrial applications sometimes call for the use of an off-center outlet at the bottom of a large

silo. We consider here the case of tilted right circular cones. More precisely, a right circular cone of

(half) opening angle hw is tilted in the yz-plane (/ � 0) by an angle a. Elementary trigonometry shows

the function h ¼ Cð/Þ describing the boundary of the computational domain to be implicitly defined
by

cos hw ¼ sin a sin/ sin hþ cos a cos h: ð30Þ

Even for relatively small angles of tilt, our numerical experiments show the presence of very steep

gradients in some of the unknowns. While this creates computational difficulties, this phenomenon in fact

results from the choice of measuring the components of the stress tensor with respect to spherical coor-

dinates. We have verified that, when measured with respect to Cartesian coordinates, the components of the

stress tensor are all smooth.

Fig. 6 illustrates the same fields as displayed for the previous two experiments. Only two circulatory

cells are observed. The main component of the velocity Vr is found to be more uniform than in the

previous two experiments. The same is true of the average stress and the normal stress on the wall.
Fig. 4 shows that the largest value of the normal stress is reached in the direction toward which the

hopper is tilted.
5. Conclusions

To our knowledge, this work represents the first time that the present model equations have been solved

in three-dimensional nonaxisymmetric geometries. The observed secondary circulation, while predicted in
an earlier study of a linearized problem [9], is here fully demonstrated as an effect of the hopper geometry.

More importantly, however, this work reveals significant nonuniform stresses, throughout the hopper as

well as along the hopper walls. Both results may have practical applications in hopper and silo design and

in the prediction of shell buckling.

In particular, the question of the location of greatest normal stress along the outer wall of such non-

axisymmetric hoppers and silos, especially ones of square cross-section, is of great importance. The present

contribution is a necessary step toward a comparison of theory with experiments. Further, our approach

extends to alternative constitutive laws such as the Matsuoka–Nakai yield condition [5] and may provide
insights into which laws best model observations.
Acknowledgements

The authors thank Bob Behringer, Tim Kelley, Michael Rotter, Tony Royal and John Wambaugh for

many helpful discussions. They are also grateful to David Schaeffer for many insightful suggestions and

remarks without which this paper would not have been possible.



P.A. Gremaud et al. / Journal of Computational Physics 200 (2004) 639–653 653
References

[1] A. Bayliss, A. Class, B.J. Matkowsky, Roundoff error in computing derivatives using the Chebyshev pseudo-spectral methods, J.

Comput. Phys. 116 (1994) 380383.

[2] L. Brillouin, Les lois de l’�elasticit�e en coordonn�ees quelconques, Congr�es International de Math�ematique, Toronto, 1924, Annales

de Physique 3 (1925) 251–298.

[3] C.J. Brown, E.H. Lahlouh, J.M. Rotter, Experiments on a square planform steel silo, Chem. Eng. Sci. 55 (2000) 43994413.

[4] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988.

[5] I.F. Collins, A systematic procedure for constructing critical state models in three dimensions, Int. J. Solids Struct. 40 (2003) 4379–

4397.

[6] A. Drescher, An experimental investigation of ow rules for granular materials using optically sensitive glass particles,

G�eotechnique 26 (1976) 591–601.

[7] P.A. Gremaud, J.V. Matthews, On the computation of steady hopper flows. I. Stress determination for coulomb materials, J.

Comput. Phys. 166 (2001) 63–83.

[8] P.A. Gremaud, J.V. Matthews, M. Shearer, Similarity solutions for granular materials in hoppers, in: J. Bona, K. Saxton, R.

Saxton (Eds.), Nonlinear PDE’s, dynamics, and continuum physics, Contemporary Mathematics, vol. 255, AMS, 2000, pp. 79–95.

[9] P.A. Gremaud, J.V. Matthews, D.G. Schaeffer, Secondary circulation in granular flow through nonaxisymmetric hoppers, Center

for Research in Scientific Computation, NCSU, Technical Report CRSC-TR02-29, to be published in SIAM J. Appl. Math.

[10] R. Jackson, Some mathematical and physical aspects of continuum models for the motion of granular materials, in: R.E. Meyer

(Ed.), Theory of Dispersed Multiphase Flow, Academic Press, New York, 1983, pp. 291–337.

[11] H.A. Janssen, Versuche €uber getreidedruck in silozellen, Zeitschrift des Vereines Deutscher Ingenieure 39 (1895) 1045–1049.

[12] A.W. Jenike, Gravity flow of bluk solids, Bulletin No. 108, Utah Eng. Expt. Station, University of Utah, Salt Lake City (1961).

[13] A.W. Jenike, A theory of flow of particulate solids in converging and diverging channels based on a conical yield function, Powder

Technol. 50 (1987) 229–236.

[14] T.M. Knowlton, J.W. Carson, G.E. Klinzing, W.C. Yang, The importance of storage, transfer and collection, Chem. Eng. Prog. 90

(1994) 44–54.

[15] J.V. Matthews, An analytical and numerical study of granular flows in hoppers, PhD Thesis, Dept. of Mathematics, North

Carolina State Univ., 2000.

[16] R.M. Nedderman, Static and kinematic of granular materials, Cambridge University Press, Cambridge, 1992.

[17] E.B. Pitman, The stability of granular ow in converging hoppers, SIAM J. Appl. Math. 48 (1988) 1033–1052.

[18] M.J.D. Powell, A Fortran Subroutine for solving systems of nonlinear algebraic equations, in: P. Rabinowitz (Ed.), Numerical

Methods for Nonlinear Algebraic Equations, 1970 (Chapter 7).

[19] J.R. Prakash, K.K. Rao, Steady compressible ow of cohesionless granular materials through a wedge-shaped bunker, J. Fluid

Mech. 225 (1991) 21–80.

[20] E.E. Rothman, Reducing round-off error in Chebyshev pseudospectral computations, in: M. Durand, F. El Dabaghi (Eds.), High

Performance Computing II, North-Holland, Amsterdam, 1991, pp. 423–439.

[21] J.M. Rotter, Private Communication, 2003.

[22] D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow, J. Diff. Eq. 66 (1987) 19–50.

[23] I.S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956.

[24] A.J.M. Spencer, Deformation of ideal granular materials, in: H.G. Hopkins, M.J. Sewell (Eds.), Mechanics of Solids, Pergamon

Press, New York, 1982, pp. 607–652.

[25] A.J.M. Spencer, Remarks on coaxiality in fully developed gravity flows of dry granular materials, in: N.A. Fleck, A.C.F. Cocks

(Eds.), IUTAM Symposium on Mechanics of Granular and Porous Materials, Kluwer, Dordrecht, 1997, pp. 227–238.


	On the computation of steady Hopper flows
	Introduction
	The model
	Numerical analysis
	Numerical results
	Vertical elliptical hoppers
	Vertical square hoppers
	Tilted circular hoppers

	Conclusions
	Acknowledgements
	References


